From Charak Samhita
Jump to navigation Jump to search

Ama means the undigested and unmetabolized components present in the body. More information on concept of ama can be read here.

Contemporary views and research updates on ama

Ama is an important principle to understand the etiopathogenetic of all disorders and to decide the treatment modalities. Agni is the digestive and metabolic factor responsible for any transformation in body. Transformation of food material predominantly takes place at the level of gastrointestinal tract (grahani-seat of jatharagni) and at the level of tissues (dhatvagni-abodes of dhatu). Dysfunction of agni results into undigested or partly digested intermediator product called as ama. Ama act as toxic element and form the basis for many pathological conditions. It can be considered raw, uncooked, unripe, immature, undigested or incompletely oxidized / metabolized or similar to a poisonous substance that disrupts body physiology. Accumulation of metabolic waste (mala) may takes place at various levels in body physiology. The amalgamation of aggravated dosha with metabolic waste results in ama formation, which is considered the initial stage of disease formation. Origin of ama is mainly considered from gastrointestinal tract (amashaya). Agni functions at different levels; hence, ama can be formed at different levels at different body sites. Forms of agni - jatharagni, bhutagni and dhatvagni functions at different level hence any impairment at the corresponding level leads to ama formation.

Digestion process starts from mouth where mechanical and chemical digestion of food takes place. Thinking, smelling and seeing food secrets saliva, helps in digestion. Component of saliva like water, mucus, electrolytes and enzymes has a unique function. Starch breakdown starts here due to the enzyme in saliva called salivary amylase. Mucus lubricates the food and helps in the formation of bolus in mouth. Small food particles are dissolved by saliva and it makes dry food moist enough to swallow comfortably. If person is not following dietary codes, eating hurriedly without proper mastication, disturbed mental health while taking food will affect this cephalic phase of digestion. It will lead to ama formation due to improper digestion process in mouth. Mastication of food is subjected to condition of teeth. Studies have attempted to find a correlation between tooth loss and nutrition. Deteriorated dental health affects mechanical digestion process and leads to nutritional deficiency.[1] Another study observed that modifying the mastication rate alters the glycemic index of rice. Its glycemic index classification shows impact of digestion process on the final outcome of food.[2]

Health of a person is essentially dependents on healthy gut. Mucosal integrity is more important for proper absorption of nutrient from villi. The intestines also play an essential role in protecting the body from harmful bacteria and toxins. If mucosal integrity is hampered it results into leaky gut syndrome. It affects the lining of intestinal mucosa leading to bacteria and other toxins to pass into the bloodstream. It also leads to the imbalance of gut microbiome.[3]

This gut leakage and dysbiosis leads to gut inflammation, also disrupt an immune homeostasis. It causes systemic immune activation, neurological disturbances and auto immune diseases. All these predisposing conditions cause ama formation which triggers many complex pathological conditions, act as route cause for many diseases.[4]

Formation of ama occurs at the level of tissues or cellular level due to impaired metabolism or due to free radical activity. Free radicals are highly reactive atom or molecule which is having one or more unpaired electrons. It always tries to have stability by giving its electron or by acquiring extra electron form adjacent molecules. After providing the electron adjacent molecule becomes unstable and acts as a free radical, a chain reaction sets in to damage many molecules. A higher concentration of free radicals causes damage to the cellular structure like DNA, protein, lipid, and other cell parts. It causes disturbance in homeostasis of body leading to disease condition.[5]

Ama formation occurs due to the accumulation of toxic or intermediate product of metabolism in the body termed as mala. These intermediate products are formed due to defect in the metabolism of protein, carbohydrate or lipid. Excessive uric acid is formed due to improper metabolism of protein which is hazardous to body tissue and joint structure. Lactic acid, acetone and ketone bodies are formed due to improper metabolism of carbohydrate and fats. Lack of insulin activity defunct carbohydrate metabolism and leads to formation of intermediate products in the body. This intermediate products act as ama and leads to many disease conditions.

Metabolic waste functions as ama: Tissue nutrients after action of metabolism (dhatvagni) nourishes body tissues and part is formed as excretory product (mala). Accumulation of this metabolic waste beyond certain limits disrupts the dosha hemostasis, leads to formation of ama. Depending on the type of metabolic waste and predominance of dosha exhibits many diseases.

Related chapters

 Page under construction


  1. Najeeb S, Zafar MS, Khurshid Z, Zohaib S, Almas K. The role of nutrition in periodontal health: An Update. Nutrients. 2016 Aug 30;8(9):530. doi: 10.3390/nu8090530. PMID: 27589794; PMCID: PMC5037517.
  2. Ranawana, V., Leow, M. K.-S., & Henry, C. J. K. (2014). Mastication effects on the glycemic index: impact on variability and practical implications. European Journal of Clinical Nutrition, 68(1), 137–139.
  3. Gerwyn Morris, Michael Berk, André F. Carvalho, Javier R. Caso, Yolanda Sanz and Michael Maes, “The Role of Microbiota and Intestinal Permeability in the Pathophysiology of Autoimmune and Neuroimmune Processes with an Emphasis on Inflammatory Bowel Disease Type 1 Diabetes and Chronic Fatigue Syndrome”, Current Pharmaceutical Design (2016) 22: 6058.
  4. Sharma H. Leaky Gut Syndrome, Dysbiosis, Ama, Free Radicals, and Natural Antioxidants. AYU. 2009; 30 (2): 88-105.
  5. Sharma GN, Gupta G, Sharma P. A Comprehensive Review of Free Radicals, Antioxidants, and Their Relationship with Human Ailments. Crit Rev Eukaryot Gene Expr. 2018;28(2):139-154. doi:10.1615/CritRevEukaryotGeneExpr.2018022258