Changes

Jump to navigation Jump to search
5,115 bytes added ,  08:54, 25 May 2023
no edit summary
Line 154: Line 154:     
== Contemporary theories ==
 
== Contemporary theories ==
=== Melanin vis-a-vis varna ===
+
=== Melanin vis-a-vis varna: ===
 
<p style="text-align:justify;">Melanin is produced by melanocytes in a process called melanogenesis. Melanin is made within small membrane–bound packages called melanosomes. As they become full of melanin, they move into the slender arms of melanocytes, from where they are transferred to the keratinocytes. Under normal conditions, melanosomes cover the upper part of the keratinocytes and protect them from genetic damage. One melanocyte supplies melanin to thirty-six keratinocytes according to signals from the keratinocytes. They also regulate melanin production and replication of melanocytes.<ref name="ref8">Jablonski, Nina (2012). Living Color. Berkeley, Los Angeles, London: University of California Press. ISBN 978-0-520-25153-3.</ref>Individuals have different skin colours mainly because their melanocytes produce different amount and kinds of melanin. The genetic mechanism behind human skin colour is mainly regulated by the enzyme tyrosinase, which creates the colour of the skin, eyes, and hair shades.<ref name="ref9">Sturm, R. A. (2006). "A golden age of human pigmentation genetics". Trends in Genetics. 22 (9): 464–469. doi:10.1016/j.tig.2006.06.010. PMID 16857289</ref><sup>,</sup><ref name="ref10">Sturm, R. A.; Teasdale, R. D.; Box, N. F. (2001). "Human pigmentation genes: Identification, structure and consequences of polymorphic variation". Gene. 277 (1–2): 49–62. doi:10.1016/s0378-1119(01)00694-1. PMID 11602344</ref> Differences in skin colour are also attributed to differences in size and distribution of melanosomes in the skin.<ref name="ref11">Jablonski, Nina (2012). Living Color. Berkeley, Los Angeles, London: University of California Press. ISBN 978-0-520-25153-3.</ref>Both the amount and type of melanin produced is controlled by a number of genes that operate under incomplete dominance.<ref name="ref12">Schneider, Patricia (2003). "The Genetics and Evolution of Skin Color: The Case of Desiree's Baby". RACE—The Power of an Illusion. Public Broadcasting Service. Archived from the original on 6 May 2015. Retrieved 14 April 2015.</ref> One copy of each of the various genes is inherited from each parent. Each gene can come in several alleles, resulting in the great variety of human skin tones.</p>
 
<p style="text-align:justify;">Melanin is produced by melanocytes in a process called melanogenesis. Melanin is made within small membrane–bound packages called melanosomes. As they become full of melanin, they move into the slender arms of melanocytes, from where they are transferred to the keratinocytes. Under normal conditions, melanosomes cover the upper part of the keratinocytes and protect them from genetic damage. One melanocyte supplies melanin to thirty-six keratinocytes according to signals from the keratinocytes. They also regulate melanin production and replication of melanocytes.<ref name="ref8">Jablonski, Nina (2012). Living Color. Berkeley, Los Angeles, London: University of California Press. ISBN 978-0-520-25153-3.</ref>Individuals have different skin colours mainly because their melanocytes produce different amount and kinds of melanin. The genetic mechanism behind human skin colour is mainly regulated by the enzyme tyrosinase, which creates the colour of the skin, eyes, and hair shades.<ref name="ref9">Sturm, R. A. (2006). "A golden age of human pigmentation genetics". Trends in Genetics. 22 (9): 464–469. doi:10.1016/j.tig.2006.06.010. PMID 16857289</ref><sup>,</sup><ref name="ref10">Sturm, R. A.; Teasdale, R. D.; Box, N. F. (2001). "Human pigmentation genes: Identification, structure and consequences of polymorphic variation". Gene. 277 (1–2): 49–62. doi:10.1016/s0378-1119(01)00694-1. PMID 11602344</ref> Differences in skin colour are also attributed to differences in size and distribution of melanosomes in the skin.<ref name="ref11">Jablonski, Nina (2012). Living Color. Berkeley, Los Angeles, London: University of California Press. ISBN 978-0-520-25153-3.</ref>Both the amount and type of melanin produced is controlled by a number of genes that operate under incomplete dominance.<ref name="ref12">Schneider, Patricia (2003). "The Genetics and Evolution of Skin Color: The Case of Desiree's Baby". RACE—The Power of an Illusion. Public Broadcasting Service. Archived from the original on 6 May 2015. Retrieved 14 April 2015.</ref> One copy of each of the various genes is inherited from each parent. Each gene can come in several alleles, resulting in the great variety of human skin tones.</p>
    +
== Excellence of body tissues (sara) vis-a-vis varna: ==
 +
<p style="text-align:justify;">The excellence of dhatus (body tissues) is studied with reference to sara. Sara is classified into eight categories. Among these eight categories, twak sara (excellence in rasa dhatu) individuals have unctuous, smooth, soft, clear, fine, less numerous, deep rooted and tender hair with lustrous skin.[Cha. Sa. VimanaSthana 8/103]Rasa dhatu is rich in jalamahabhutaimparting smoothness,softness and unctuousness to the skin. <br/>Rakta sara (excellence in rakta dhatu) individuals have unctuousness, red colour, beautiful dazzling appearance of the ears, eyes, face, tongue, nose, lips, sole of the hand and feet, nails, forehead and genital organs.[Cha. Sa. VimanaSthana 8/104] These individuals are believed to have well developed intra-dermal blood capillaries and circulation along with overall excellence in blood vascular system. <br/>Meda sara (excellence in meda dhatu) individuals have unctuousness in complexion, eyes, scalp hair and other parts of the body, nails, teeth, lips, urine and faeces.[Cha. Sa. VimanaSthana 8/106] These individuals have excellence in adipose tissue which is unctuous in nature. <br/>Majja sara (excellence in majja dhatu) individuals too have unctuous complexion.[Cha. Sa. VimanaSthana 8/108]Majja dhatu is predominantly formed of jalamahabhuta. <br/>Shukra sara (excellence in shukra dhatu) individuals have a gentle look, having eyes as if filled with milk, cheerfulness, having teeth which are unctuous, round, strong, even, beautiful, clean and have unctuous complexion with dazzling appearance.[Cha. Sa. VimanaSthana 8/109] Shukra dhatu or reproductive tissues are believed to be formed at the end from essence of all other dhatus. Thusit indicate the excellence of all dhatus. </p>
 +
 +
== Effect of dinacharya(daily regimen) on varna ==
 +
<p style="text-align:justify;">A healthy daily regimen helps in maintaining a healthy varna. These regimens include following: <br/>Consumption of food in proper quantity[Cha. Sa. Sutra Sthana 5/8] <br/>Applying udvartana (massaging the body with soft, fragrant powder) [Ast. Hri. Sutra Sthana 2/15] <br/>Maintaining  the three supports of life viz. food, sleep and brahmacharya (avoidance of sexual act physically, mentally and verbally in all ways under any circumstances) in life[Cha. Sa. Sutra Sthana 11/35] <br/>Use of rasayana[Cha. Sa. ChikitsaSthana 1/1/7] (the drug, food or therapy which has capacity to prevent ageing, improve longevity, provide immunity against the diseases, promote mental competence, increase vitality and lustre of the body). <br/>Jatharagni (digestive capacity) is also responsible for complexion [Cha. Sa. ChikitsaSthana 15/3], hence such diet should be consumed which establishes a healthy jatharagni. Importance of diet in imparting good complexion is mentioned.[Cha. Sa. Sutra Sthana 27/349] [Cha. Sa. Sutra Sthana 27/3]. The food that is consumed is digested by jatharagni. This digestion produces nourishment to the dhatus (tissues) of the body. Healthy tissues are responsible for maintenance of healthy skin, thus indicating role of jatharagni in varna. </p>
 +
 +
== Ojas & varna ==
 +
<p style="text-align:justify;">Ojas is the essence of the body tissues (dhatus) [Su. Sa. Sutra Sthana 15/24]. As healthy state of all dhatu keeps the skin healthy.Thusone of the functions of ojas is to maintain varna.[Su. Sa. Sutra Sthana 15/25] The qualitative deterioration (ojavyapat) causes impairment of complexion.[Su. Sa. Sutra Sthana 15/29]</p>
 +
 +
== Varna as an atmaja bhava ==
 +
<p style="text-align:justify;">Ayurveda believes that six procreative factors affect the formation of foetus. One among these factors is atmaja (atma=soul, ja=emerging from) factor. Atmaja factor is belived to affect varna.[Cha. Sa. SharirSthana 3/10]</p>
 +
 +
== Importance of concept ==
 +
=== Importance in diagnosis & prognosis of disease ==
 +
<p style="text-align:justify;">The natural complexion indicates a state of health or natural physiological processes inside the body. Sudden spontaneous change in natural complexion may be due to some pathology. Sudden drastic change in natural complexion may also indicate death in near future. Apart from discussing the natural complexion, some of the abnormal complexionslike blue, grey, coppery, green and albino (extremely white)are described. [Cha. Sa. IndriyaSthana 1/9] Example, cyanotic complexion is observed in severe right ventricular hypertrophic cardiomyopathy.<ref name="ref6" /> The abnormalities includeif half of the body has natural complexion and the other have abnormal complexion, and both of them are evenly demarcated by a line.These normal and abnormal complexions may simultaneously appear in left and right sides, front and back sides, upper and lower parts or internal and external parts of the body. Natural and abnormal complexions simultaneously appearing in face or other parts of the body, are the morbid signs indicating imminent death.[Cha. Sa. IndriyaSthana 1/10]For example, amelanotic melanomas presenting as red skin lesions are often lethal.<ref name="ref7" /></p>
    
<big>'''[[Special:ContactMe|Send us your suggestions and feedback on this page.]]'''</big>
 
<big>'''[[Special:ContactMe|Send us your suggestions and feedback on this page.]]'''</big>

Navigation menu