Changes

Jump to navigation Jump to search
1 byte removed ,  10:49, 16 September 2020
no edit summary
Line 717: Line 717:  
=== II. Impact of age on grains and grain-based food products ===
 
=== II. Impact of age on grains and grain-based food products ===
   −
The age of food grains helps determine the quality as well as digestibility of food. ''Shuka dhanya'' (monocotyledons) and ''shami dhanya'' (dicotyledons) that are old /aged are easy to digest and are dry in property as compared to new ones [Cha.Sa.Sutra Sthana 27/309]]. ''Nava anna'', or fresh, non-aged rice, millet, etc. increase ''kapha'' and are heavier than old grains. Charak notes that all new and fresh grains are heavy and induce ''santarpana'', while aged grains are lighter to digest.
+
The age of food grains helps determine the quality as well as digestibility of food. ''Shuka dhanya'' (monocotyledons) and ''shami dhanya'' (dicotyledons) that are old /aged are easy to digest and are dry in property as compared to new ones [Cha.Sa.Sutra Sthana 27/309]. ''Nava anna'', or fresh, non-aged rice, millet, etc. increase ''kapha'' and are heavier than old grains. Charak notes that all new and fresh grains are heavy and induce ''santarpana'', while aged grains are lighter to digest.
    
Sharangdhara in Purva Khanda also talks of new and old grains and recommends six to twelve month-old grains to be used. Biochemical changes that help in digestion may be occurring after certain aging of grains. Per researchers (Seguchi, 1993), aging of flour and grains does enhance their functionality as ingredients for cakes and batter. Cereals can be stored for long periods without microbial spoilage. However, biochemical changes also occur during aging. There is great possibility that certain amino acids and phyto chemicals get stabilized in the grain which make them safe for consumption. Eventually, the grain respires, dry matter is lost and functional and nutritional aspects of the grain are altered. Age related changes have great influence on the viscosity of any batter made out of wheat-flour and the water-binding ability of the wheat flour (Shelke et al, 1992). In addition, the starch granule surface protein is found to increase up to three to four times with aging. However, prolonged aging is not recommended (Pomeranz et al, 1968). The moisture content of grains, the storage temperature and relative humidity have been shown to exert dramatic changes in the acidity, pH, free amino nitrogen, crude protein, and protein quality. Significant changes in soluble sugars and amylase contents of the grains have also been reported during storage at elevated temperature<ref> Zia-Ur Rehman, W.H. Shah. Biochemical changes in wheat during storage at three temperatures. Plant Foods for Human Nutrition 54: 109–117, 1999. </ref>.   
 
Sharangdhara in Purva Khanda also talks of new and old grains and recommends six to twelve month-old grains to be used. Biochemical changes that help in digestion may be occurring after certain aging of grains. Per researchers (Seguchi, 1993), aging of flour and grains does enhance their functionality as ingredients for cakes and batter. Cereals can be stored for long periods without microbial spoilage. However, biochemical changes also occur during aging. There is great possibility that certain amino acids and phyto chemicals get stabilized in the grain which make them safe for consumption. Eventually, the grain respires, dry matter is lost and functional and nutritional aspects of the grain are altered. Age related changes have great influence on the viscosity of any batter made out of wheat-flour and the water-binding ability of the wheat flour (Shelke et al, 1992). In addition, the starch granule surface protein is found to increase up to three to four times with aging. However, prolonged aging is not recommended (Pomeranz et al, 1968). The moisture content of grains, the storage temperature and relative humidity have been shown to exert dramatic changes in the acidity, pH, free amino nitrogen, crude protein, and protein quality. Significant changes in soluble sugars and amylase contents of the grains have also been reported during storage at elevated temperature<ref> Zia-Ur Rehman, W.H. Shah. Biochemical changes in wheat during storage at three temperatures. Plant Foods for Human Nutrition 54: 109–117, 1999. </ref>.   
2,062

edits

Navigation menu