Changes

Jump to navigation Jump to search
Line 475: Line 475:  
The functional trait of such food articles is ''snigdha'' (oily) ''guna'' is ''sneha'' (unctuousness), ''mriduta'' (softness), and ''ardrata'' (malleability, fluidity). ''Snigdha'' food articles include those derived from lipids and fat molecules. Similarly, ''madhura'' (sweetness) is a property of food substances that possess predominantly sweet taste - not just perceived at the tongue, but also in many parts/tissues along our digestive system. ''Guru'' is the primary property that indicates “heaviness” of a food item, and a ''guru'' food article is heavy to digest and increases bulkiness of the tissues. ''Guru'' is the opposite of ''agni'' and hence delays digestion and metabolism and is used, therefore, in therapies that require nourishment, enhancement of physical strength, etc (''brimhana, agnimaandyakara, upalepa, bala, upachaya'' and ''tarpana''). Finally, ''picchilla'' is sliminess and stickiness, and indicates food items that vitiate ''kapha'' and ''mamsa-meda dhatu'' particularly.  
 
The functional trait of such food articles is ''snigdha'' (oily) ''guna'' is ''sneha'' (unctuousness), ''mriduta'' (softness), and ''ardrata'' (malleability, fluidity). ''Snigdha'' food articles include those derived from lipids and fat molecules. Similarly, ''madhura'' (sweetness) is a property of food substances that possess predominantly sweet taste - not just perceived at the tongue, but also in many parts/tissues along our digestive system. ''Guru'' is the primary property that indicates “heaviness” of a food item, and a ''guru'' food article is heavy to digest and increases bulkiness of the tissues. ''Guru'' is the opposite of ''agni'' and hence delays digestion and metabolism and is used, therefore, in therapies that require nourishment, enhancement of physical strength, etc (''brimhana, agnimaandyakara, upalepa, bala, upachaya'' and ''tarpana''). Finally, ''picchilla'' is sliminess and stickiness, and indicates food items that vitiate ''kapha'' and ''mamsa-meda dhatu'' particularly.  
   −
Today’s research is consistent with the above findings of Ayurveda. Researchers acknowledge that taste receptors exist in the upper gastrointestinal tract as well. These receptors are “primarily located in the intestinal brush and enteroendocrine cells, and recognize sugars, D-amino acids, sweet proteins, and artificial sweeteners”, as per their paper. Peptide YY (PYY) exerts its action through NPY receptors by inhibiting gastric motility and increasing water and electrolyte absorption in the colon.  PYY may also suppress pancreatic secretion, as it is secreted by neuro-endocrine cells in the ileum and colon in response to a meal, and has been shown to reduce appetite. It works by slowing the gastric emptying, thereby increasing the efficiency of digestion and nutrient absorption after a meal. Considering the effects of sweet food substances, PYY, in certain quantities, helps induce satiety in a person and thus in excess, inhibits appetite. This study clearly suggests the impact of madhura rasa and snigdha food substances in creating santarpaniya vyadhi or increased anabolism. Like GLP -1, GIP is related to metabolism and inflammation.  
+
Today’s research is consistent with the above findings of [https://en.wikipedia.org/wiki/Ayurveda Ayurveda] . Researchers acknowledge that taste receptors exist in the upper gastrointestinal tract as well. These receptors are “primarily located in the intestinal brush and enteroendocrine cells, and recognize sugars, D-amino acids, sweet proteins, and artificial sweeteners”, per their research. Peptide YY (PYY) exerts its action through NPY receptors by inhibiting gastric motility and increasing water and electrolyte absorption in the colon.  PYY may also suppress pancreatic secretion, as it is secreted by neuro-endocrine cells in the ileum and colon in response to a meal, and has been shown to reduce appetite. It works by slowing the gastric emptying, thereby increasing the efficiency of digestion and nutrient absorption after a meal. Considering the effects of sweet food substances, PYY, in certain quantities, helps induce satiety in a person and thus in excess, inhibits appetite. This study clearly suggests the impact of ''madhura rasa'' and ''snigdha'' food substances in creating ''santarpaniya vyadhi'' or increased anabolism. Like GLP -1, GIP is related to metabolism and inflammation.  
Thus, it can be said that excess of madhura, guru, snigdha and pichchilla foods can have inflammatory effect at the molecular level. If the above properties elaborated by Charaka are to be understood, it can be clearly stated that they increase body tissues in volume and delay the digestion of food. This seems to be acceptable and the effect may be mediated through peptide YY. As it delays digestion and increases the nutrient uptake, these food substances lead to santarpana.
+
 
II. Impact of age on grains and grain-based food products
+
Thus, it can be said that excess of ''madhura, guru, snigdha'' and ''pichchilla'' foods can have inflammatory effect at the molecular level. If the above properties elaborated by Charaka are to be understood, it can be clearly stated that they increase body tissues in volume and delay the digestion of food. This seems to be acceptable and the effect may be mediated through peptide YY. As it delays digestion and increases the nutrient uptake, these food substances lead to ''santarpana''.
 +
 
 +
==== II. Impact of age on grains and grain-based food products ====
 +
 
 
The age of food grains helps determine the quality as well as digestibility of food. Shuka dhanya (monocotyledons) and shami dhanya (dicotyledons) that are old /aged are easy to digest and are dry in property as compared to new ones.  Nava anna, or fresh, non-aged rice, millet, etc. increase kapha and are heavier than old grains.  Charaka notes that all new and fresh grains are heavy and induce santarpana, while aged grains are lighter to digest.
 
The age of food grains helps determine the quality as well as digestibility of food. Shuka dhanya (monocotyledons) and shami dhanya (dicotyledons) that are old /aged are easy to digest and are dry in property as compared to new ones.  Nava anna, or fresh, non-aged rice, millet, etc. increase kapha and are heavier than old grains.  Charaka notes that all new and fresh grains are heavy and induce santarpana, while aged grains are lighter to digest.
 
Sharangdhara in Purva Khanda also talks of new and old grains and recommends six to twelve month-old grains to be used. Biochemical changes that help in digestion may be occurring after certain aging of grains. Per researchers (Seguchi, 1993), aging of flour and grains does enhance their functionality as ingredients for cakes and batter. Cereals can be stored for long periods without microbial spoilage. However, biochemical changes also occur during aging. There is great possibility that certain amino acids and phyto chemicals get stabilized in the grain which make them safe for consumption.  Eventually, the grain respires, dry matter is lost and functional and nutritional aspects of the grain are altered. Age related changes have great influence on the viscosity of any batter made out of wheat-flour and the water-binding ability of the wheat flour (Shelke et al, 1992). In addition, the starch granule surface protein is found to increase up to three to four times with aging. However, prolonged aging is not recommended (Pomeranz et al, 1968). The moisture content of grains, the storage temperature and relative humidity have been shown to exert dramatic changes in the acidity, pH, free amino nitrogen, crude protein, and protein quality. Significant changes in soluble sugars and amylase contents of the grains have also been reported during storage at elevated temperature.   
 
Sharangdhara in Purva Khanda also talks of new and old grains and recommends six to twelve month-old grains to be used. Biochemical changes that help in digestion may be occurring after certain aging of grains. Per researchers (Seguchi, 1993), aging of flour and grains does enhance their functionality as ingredients for cakes and batter. Cereals can be stored for long periods without microbial spoilage. However, biochemical changes also occur during aging. There is great possibility that certain amino acids and phyto chemicals get stabilized in the grain which make them safe for consumption.  Eventually, the grain respires, dry matter is lost and functional and nutritional aspects of the grain are altered. Age related changes have great influence on the viscosity of any batter made out of wheat-flour and the water-binding ability of the wheat flour (Shelke et al, 1992). In addition, the starch granule surface protein is found to increase up to three to four times with aging. However, prolonged aging is not recommended (Pomeranz et al, 1968). The moisture content of grains, the storage temperature and relative humidity have been shown to exert dramatic changes in the acidity, pH, free amino nitrogen, crude protein, and protein quality. Significant changes in soluble sugars and amylase contents of the grains have also been reported during storage at elevated temperature.   

Navigation menu